
Advanced Information, Computation, Communication II Homework - 8
Spring 2025 Exercise session on Wednesday, April 9

Problem 8.1.

1. Which of the following are commutative groups? For the commutative groups, give the
identity element and the inverse of any element.

(a) (Z, ·)

Solution:

It is not a commutative group. There is an identity element 1, but not all
elements have inverses (in fact only ±1 have an inverse).

Relevant slides : 424 - 426

(b) (Rn,+), for some fixed positive integer n, where + is the componentwise addition

Solution:

It is a commutative group because it is a cartesian product of commutative
groups. The identity element is (0, . . . , 0), and the inverse of (a1, . . . , an) is
(−a1, . . . ,−an).

Relevant slides : 435 - 437

(c) (Rn, ·), where · is the scalar product: (u1, . . . , un) · (v1, . . . , vn) =
∑n

i=1 uivi

Solution:

This is not a commutative group. In fact the product of two elements is not
an element of Rn, but of R.

Relevant slides : 424 - 426

(d) ({z ∈ C|zn = 1}, ·), for some fixed positive integer n

Solution:

It is a commutative group. It is closed: if xn = 1 and yn = 1, then (xy)n = 1.
The identity element is 1 and the inverse of z is 1/z (which is in the group
since (1/z)n = 1/zn = 1/1 = 1).

Relevant slides : 424 - 426

(e) (eiθ, ·), where θ ∈ R and i is the unit complex number such that i2 = −1

Solution:

This is a commutative group: the operation is closed under multiplication
(eiθeiα = ei(θ+α)), the identity element is e0 = 1, and each element eiθ has a
multiplicative inverse which is e−iθ. (eiθe−iθ = e0.)

Relevant slides : 424 - 426

(f) ({0, 1},∧), where ∧ is the logical ”and” operation
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Solution:

It is not a commutative group. 1 is the identity element but 0 does not have
an inverse since 0 ∧ 1 = 0 ∧ 0 = 0.

Relevant slides : 424 - 426

(g) (Z/5Z, ·)

Solution:

This is not a commutative group. The identity element is [1]5 but the element
[0]5 has no inverse.

Relevant slides : 424 - 426

(h) (Z/5Z \ {[0]5}, ·)

Solution:

This is a commutative group. It has the same table as (Z/4Z,+) with the
correspondence [1]5 7→ [0]4, [2]5 7→ [1]4, [3]5 7→ [3]4, [4]5 7→ [2]4; so it is a
commutative group. The identity element is [1]5, the inverse of [2]5 is [3]5
(and vice versa), and [4]5 is its own inverse.

Relevant slides : 424 - 426

(i) (Z/5Z \ {[0]5},+)

Solution:

This is not a commutative group. The sum [1]5 + [4]5 = [0]5 is not contained
in the set. Also, there is no identity element.

Relevant slides : 424 - 426

2. Are the following commutative groups isomorphic? If not - prove it. If yes - give the
tables and the isomorphism:

(a) G1 = (Z/5Z∗, ·) and H1 = ({z ∈ C|z4 = 1}, ·)
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Solution:

These commutative groups are isomorphic. The first group is
{[1]5, [2]5, [3]5, [4]5} with multiplication modulo 5, while the second group is
{1,−1, i,−i} with complex multiplication. The associated tables are:

G1 [1]5 [2]5 [3]5 [4]5
[1]5 [1]5 [2]5 [3]5 [4]5
[2]5 [2]5 [4]5 [1]5 [3]5
[3]5 [3]5 [1]5 [4]5 [2]5
[4]5 [4]5 [3]5 [2]5 [1]5

H1 1 −1 i −i

1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1

The commutative groups are isomorphic via the correspondence

[1]5 7−→ 1

[2]5 7−→ i

[3]5 7−→ −i

[4]5 7−→ −1.

Exchanging the images of [2]5 and [3]5 is also a valid solution.
Relevant slides : 444 - 446, 461

(b) G2 = (Z/6Z∗, ·) and H2 = (Z/3Z∗, ·)

Solution:

The two commutative groups are isomorphic. G2 is {[1]6, [5]6} with multipli-
cation modulo 6, while H2 is {[1]3, [2]3} with multiplication modulo 3. The
corresponding tables are:

G2 [1]6 [5]6
[1]6 [1]6 [5]6
[5]6 [5]6 [1]6

H2 [1]3 [2]3
[1]3 [1]3 [2]3
[2]3 [2]3 [1]3

It is immediate to see that the map sending [1]6 7→ [1]3 and [5]6 7→ [2]3 is an
isomorphism.

Relevant slides : 444 - 446, 461

(c) G3 = (Z/2Z,+)× (Z/2Z,+) and H3 = (Z/4Z,+)
(Hint: Check the orders of the elements.)
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Solution:

The two commutative groups are not isomorphic. Two isomorphic commuta-
tive groups must have the same set of orders.
The elements of the first commutative group are, 00, 01, 10, 11, the identity
element is 00. Note that, 00 = 012 = 102 = 112. Therefore the orders of the
elements of this commutative group is {1, 2, 2, 2}
The elements of the second commutative group are, 0, 1, 2, 3, the identity ele-
ment is 0. Note that 0 = 14 = 22 = 34. Therefore the orders of the elements
of this commutative group is {1, 2, 4, 4}.

Relevant slides : 444 - 446, 461

(d) G4 = (Z/15Z∗, ·) and H4 = (Z/7Z,+)

Solution:

The two commutative groups are not isomorphic. G4 is
{[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15, } with multiplication mo-
dulo 15, while H4 is {[0]7, [1]7, [2]7, [3]7, [4]7, [5]7, [6]7} with sum modulo 7.
The first group has 8 elements, while the second has 7, so they cannot be
isomorphic.

Relevant slides : 444 - 446, 451 - 452

Problem 8.2.

1. Compute the order of each element in the commutative group (Z/18Z∗, ·).
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Solution:

The elements of Z/18Z∗ are all the numbers between 0 and 17 which are coprime
with 18. There are 6 such numbers, which are: 1, 5, 7, 11, 13, 17. The period of any
element should divide the cardinality of the group, so it can be 1, 2, 3 or 6. We
construct the table of powers:

x x2 x3 x6

1
5 7 17 1
7 13 1
11 13 17 1
13 7 1
17 1

Hence:

1 has order 1,

17 has order 2,

7 and 13 have order 3,

5 and 11 have order 6.

Relevant slides : 427 - 429, 455

2. Can you find an integer k such that (Z/18Z∗, ·) and (Z/kZ,+) are isomorphic? If yes,
give an example of such isomorphism.

Solution:

In order to have such an isomorphism, the cardinality of the two groups should
be the same, so we must have k = 6. Next, we check if we can make an element-
to-element correspondence between the two groups such that their periods match.
This is possible, and an example of such correspondence is shown in the table
below:

(Z/18Z∗, ·) (Z/6Z,+) Element order
1 0 1
5 1 6
7 2 3
11 5 6
13 4 3
17 3 2

Hence, according to the theorem seen in class, the two groups are isomorphic, and
the isomorphism is given by the correspondence table above.

Relevant slides : 444 - 446, 461

5



Problem 8.3.

1. Show that (x, y) is invertible in (Z/17Z, ·)× (Z/121Z, ·) if and only if x is invertible in
(Z/17Z, ·) and y is invertible in (Z/121Z, ·).

Solution:

Let (x, y) ∈ (Z/17Z, ·) × (Z/121Z, ·) be an invertible element. Then there exists
(a, b) such that (a, b)(x, y) = (1, 1). But (a, b)(x, y) = (ax, by). Therefore, we have
ax = [1]17 and by = [1]121 which implies that x is invertible in (Z/17Z, ·) and y is
invertible in (Z/121Z, ·).
Conversely, if x is invertible in (Z/17Z, ·) and y is invertible in (Z/121Z, ·), with
a and b being their corresponding inverses, then (a, b) is the inverse of (x, y) in
(Z/17Z, ·)× (Z/121Z, ·).

Relevant slides : 437 - 439

2. How many invertible elements are in (Z/17Z, ·)× (Z/121Z, ·)?

Solution:

Let M be the answer. According to the previous question, there are as many
invertible elements in (Z/17Z, ·) × (Z/121Z, ·) as the pairs (x, y) where x is an
invertible element in (Z/17Z, ·) and y is an invertible element in (Z/121Z, ·).
Therefore,

M = ϕ(17)× ϕ(121) = 16 · 110 = 1760,

where we have used the fact that ϕ(121) = ϕ(112) = 112− 11 (as seen in class, for
p prime and a positive integer k, ϕ(pk) = pk − pk−1.)

Relevant slides : 428 - 431, 435 - 437

3. Solve the following equation where the unknown is n ∈ N:

2n ≡ 1 mod 13

Solution:

The equation is equivalent to

([2]13)
n = [1]13

The order of [2]13 in Z/13Z∗ divides ϕ(13) = 12. It can therefore be equal to 1,
2, 3, 4, 6 or 12. As [2]13 ̸= [1]13, ([2]13)

2 = [4]13 ̸= [1]13, ([2]13)
3 = [8]13 ̸= [1]13,

([2]13)
4 = [16]13 = [3]13 ̸= [1]13, ([2]13)

6 = [64]13 = [12]13 ̸= [1]13, the order of [2]13
is 12.
But [2]n13 = 1 if and only if n is an integer multiple of the order. Therefore, the
solutions of the equation are {0, 12, 24, . . . }, that is, the positive multiples of 12.

Relevant slides : 455 - 457, 464

4. Solve the equation x19 = x for x ∈ (Z/19Z, ·).

6



Solution:

Since 19 is a prime number, according to Fermat’s theorem, all the elements
x ∈ (Z/19Z, ·) satisfy the equation.

Relevant slide : 480

Problem 8.4.

Consider the El Gamal cryptosystem.

1. Select p = 47. Verify that g = 5 is indeed a generator of (Z/47Z∗, ·).

Solution:

We know that the order of every element must divide the total number of elements
in (Z/47Z∗, ·). There are exactly 46 elements in this group. Moreover, 46 = 2 · 23.
By Lagrange’s theorem, this implies that elements can only have order 2, 23, or 46.
We can numerically verify that 523 mod 47 = 46 (you can also do it by hand via
smart successive squaring), thus 546 ≡ (523)2 ≡ (46)2 mod 47 ≡ (46)2 ≡ (−1)2 ≡
1 (mod 47) and therefore order(5) = 46, meaning that g = 5 is a generator.

Relevant slide : 485

2. Alice wants to send the plaintext t = 13 using g = 5 to Bob. Alice receives from Bob
gx mod 47 = 31 (with x being Bob’s secret). Alice’s secret number is y = 2. What two
integers will Alice send to Bob to share the plaintext t?

Solution:

Alice computes gy mod 47 = 52 mod 47 = 25 and gxy · t mod 47 = (gx)y · t mod
47 = 312 · 13 mod 47 = 21 · 13 mod 47 = 38. That is, Alice sends to Bob (gy, gxy ·
t) mod 47 = (25, 38).

Relevant slides : 308 - 309

3. You now learn Bob’s secret, x = 3 (indeed g3 mod 47 = 31). Show how Bob can get
back the plaintext from the two integers Alice sent him.
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Solution:

To get back the plaintext:
Step 1: Compute the shared secret

gxy = (gy)x = 253 mod 47 = 21

Step 2: Find the multiplicative inverse of gxy = 21
One approach is to use the extended Euclidean algorithm.
Alternatively, observe that:

56 ≡ 21 mod 47

Then the inverse of 21 modulo 47 is:

21−1 ≡ (56)−1 ≡ 5−6 ≡ 546−6 ≡ 540 ≡ 9 (mod 47)

Step 3: Recover the plaintext

t = g−xy · (gxy · t) mod 47 = 9 · 38 mod 47 = 13

Relevant slides : 308 - 309

4. Select p = 61. Is g = 9 a good choice? Eve observes the communication between Alice
and Bob:

— Bob sends gx = 58 to Alice.

— Alice replies with (gy, gxy · t) = (34, 28).

Can Eve recover the message t shared between Alice and Bob? (Hint: Determine the
order of g modulo 61.
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Solution:

Step 1: Determine the order of g = 9 in Z/61Z.
Compute successive powers:

91 ≡ 9 mod 61,

92 ≡ 81 ≡ 20 mod 61,

93 ≡ 9 · 20 = 180 ≡ 58 mod 61,

94 ≡ 9 · 58 = 522 ≡ 34 mod 61,

95 ≡ 9 · 34 = 306 ≡ 1 mod 61.

So, the order of g = 9 is 5.
Step 2: Recover the secret exponents x and y.
Eve sees:

gx = 58 ⇒ x ≡ 3 (mod 5) (since 93 ≡ 58 mod 61),

gy = 34 ⇒ y ≡ 4 (mod 5) (since 94 ≡ 34 mod 61).

Step 3: Compute the shared key gxy = 912. Since 95 ≡ 1, we reduce exponent
modulo 5:

912 ≡ 912 mod 5 ≡ 92 ≡ 20 mod 61.

Step 4: Recover t.
Eve sees gxy · t = 28, and now knows gxy = 20. She computes:

t ≡ 28 · 20−1 mod 61.

Compute the inverse of 20 modulo 61. Use the extended Euclidean algorithm:

20−1 ≡ (92)−1 ≡ 9−2 ≡ 9(−2 mod 5) ≡ 93 ≡ 58 (mod 61)

Finally:

t = 28 · 58 mod 61 = 1634 mod 61 = 38.

Conclusion: Because g = 9 has a small order (5), Eve was able to recover both
exponents x and y, the shared key gxy, and ultimately the message t by bruteforce.
This demonstrates that a generator of large order is required for strong security.

Problem 8.5.

1. Let (G, ⋆) be a finite commutative group. Consider the following encryption method.
The message that Alice wants to send to Bob is an element t ∈ G. The key is a uniformly
distributed random element k ∈ G, selected independently of the message t. Alice sends
the ciphertext c = k ⋆ t to Bob. Does it provide perfect secrecy?
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Solution:

Suppose you are given both the plaintext t and the ciphertext c. Then, because we
are in a group where every element must have an inverse (and the inverse must
be unique), there is exactly one key k that maps the given plaintext t to the given
ciphertext c as c = k ⋆ t. Obviously, that key can then be written as k = c ⋆ t−1,
where t−1 is the inverse (with respect to the group operation ⋆) of the element t.
Now, if we consider the conditional probability that the ciphertext assumes the
particular value c, given that the plaintext has assumed the particular value t, then
by the above argument, this probability is precisely the same as the probability
that the key is k = c⋆t−1.Moreover, the key is selected independently of everything
else and uniformly distributed over all its possible values. In math, this argument
is expressed as:

pC|T (c|t) = pK|T (c ⋆ t
−1|t) = pK(c ⋆ t

−1) =
1

|G|
.

Said differently, the ciphertext C is uniformly distributed over each element of G,
regardless of the plaintext. (An intuitive way to see this is to think of the key k
being shifted by the plaintext t; since the key is uniformly distributed over the
group, and the shift maps each element of a group uniquely to another element, the
result of the shift is still uniformly distributed.) Hence C and T are independent.
Therefore the method provides perfect secrecy.
Note that the scheme above generalises the one-time pad to an arbitrary group.
(And the proof of perfect secrecy follows the same lines as in the proof for one-time
pad).

Relevant slides : 286 - 287

2. Let m > 1 be an integer, consider a message t ∈ {0, 1, . . . ,m − 1} and a uniformly
distributed key k ∈ {0, 1, . . . ,m−1}. Which of the following encryption methods provide
perfect secrecy?

(a) c = t+ k

Solution:

It does not provide perfect secrecy. For instance, if c = 0, then we know that
the plaintext was t = 0 and the key k = 0.

(b) c = t+ k mod m

Solution:

We are within the group (Z/mZ,+) so according to the result in question
8.5.1, the method does provide perfect secrecy.

3. Let m > 1 be an integer, consider a message t ∈ {1, . . . ,m − 1} and a uniformly
distributed key k ∈ {1, . . . ,m− 1}. Which of the following encryption methods provide
perfect secrecy?

(a) c = t · k
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Solution:

It does not provide perfect secrecy. For instance, if c = 1, then we know that
the plaintext was t = 1 and the key k = 1.

(b) c = t · k mod m

Solution:

It provides perfect secrecy if and only if m is a prime number. Indeed, if
m is prime, we are within the group (Z/mZ∗, ·) and again, according to the
result in question 8.5.1, the method does provide perfect secrecy. If m is not
prime, then it is not an encryption: the message cannot be recovered from
the ciphertext when the key k is not invertible in Z/mZ∗. For instance, with
m = 6 and k = 3, the messages t = 1 and t = 5 both give the ciphertext
c = 3.
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